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T h e  p r o b l e m  of  p r o p a g a t i o n  of a l ong i t ud ina l  s h e a r  c r a c k  in a m e d i u m  wi th  a r a n d o m  f i e ld  of 
i n t e r n a l  s t r e s s e s  is  c o n s i d e r e d  and so lved  wi th  the  u se  of the  t h e o r y  of q u a s i - b r i t t l e  f a i l u r e .  
L o c a l  c r i t e r i o n  of c r a c k  p r o p a g a t i o n  u n d e r  c y c l i c  load ing  is d e r i v e d ,  and i ts  a p p l i c a t i o n  as  a 
m o d e l  of f a t igue  c r a c k  p r o p a g a t i o n  is i n v e s t i g a t e d .  

Cond i t i ons  of  l ong i tud ina l  s h e a r  i m p l y  tha t  d i s p l a c e m e n t s  a r e  n o r m a l  to  a c e r t a i n  x y - p t a n e  in t he  a b -  
s e n c e  of  e x t e r n a l  l o a d s .  In an e l a s t i c  m e d i u m  such  a f i e ld  can  only e x i s t  if t he  r e s u l t i n g  s t r a i n s  do not  
s a t i s f y  the  c o m p a t i b i l i t y  cond i t ion .  

It can  be  shown tha t  any  i n t e r n a l  s t r e s s  f i e ld  can  b e  a t t r i b u t e d  to  the  d i s t r i b u t i o n  of  d i s l o c a t i o n s  [1]. 
U n d e r  cond i t ions  of l ong i tud ina l  s h e a r  a s t r a i n  f i e ld  wh ich  does  not  s a t i s f y  t he  c o m p a t i b i l i t y  cond i t i on  can  
b e  de f ined  in t e r m s  of h e l i c a l  d i s l o c a t i o n s  w h o s e  a x e s  a r e  n o r m a l  to  the  x y - p l a n e .  When  a c r a c k  o r  c a v i t y  
is  f o r m e d ,  the  i n i t i a l  f i e ld  of i n t e r n a l  s t r e s s e s  is  c o n v e r t e d ,  owing to changed  b o u n d a r y  c o n d i t i o n s ,  into a 
c e r t a i n  s t r e s s  f i e ld  which  we s h a l l  c a l l  r e s i d u a l .  Dur ing  the  p r o c e s s  of  c r a c k  o r  c a v i t y  p r o p a g a t i o n  the  
d i s l o c a t i o n  d i s t r i b u t i o n  d e n s i t y  w i l l  b e  c o n s i d e r e d  to be  an i n v a r i a n t  c h a r a c t e r i s t i c .  

L e t  us c o n s i d e r  in the  p lane  of  the  c o m p l e x  v a r i a b l e  z = x + iy a s e m i i n f i n i t e  c r a c k  r e s u l t i n g  f r o m  
l ong i t ud ina l  s h e a r  (F ig .  1) and d e t e r m i n e  the  s t r e s s  i n t e n s i t y  c o e f f i c i e n t  k at  t he  c r a c k  t i p  z = - h .  

Us ing  the  c o n f o r m a l  t r a n s f o r m a t i o n  z = w(~) of  the  r e g i o n  a r o u n d  the  c r a c k  into the  h a l f - p l a n e  V > 0 
of  v a r i a b l e s  [ = } = iV, we  ob t a in  

GF' (~) for ~ =0 (i) 
k = i  V ~ ( ~ )  

H e r e  F($) is  a func t ion  of s t r e s s  in the  m a p p e d  r e g i o n ,  $ = 0 is  t he  point  wh ich  in t he  c o n f o r m a l  m a p  c o r -  
r e s p o n d s  to  the  c r a c k  t ip ,  and  the  p r i m e  deno t e s  d i f f e r e n t i a t i o n .  

F o r  an  i nd iv idua l  he l ix  of  d i s l o c a t i o n  a t  poin t  z 0 = a + i t  the  s t r e s s  funct ion  is of t he  f o r m  

F (~) = ib I n $  - -  ~o (2) 

w h e r e  b is  the  B u r g e r s  v e c t o r  and  $0 = ~0 + iV0 is the  poin t  def ined  by  the  t r a n s f o r m a t i o n  z 0 = w(~0). F u n c -  
t i on  z = w([)  = - h - $ 2  is u sed  fo r  c o n f o r m a l  ma pp ing  the  r e g i o n  s u r r o u n d i n g  the  c r a c k  in the  ha l fp l ane  in 
wh ich  the  c r a c k  t i p  is  r e p r e s e n t e d  by  poin t  $ -- 0. 

F r o m  Eqs .  (1) and (2) fo l lows  

k = bG f ~ o l  (~0~ + ~o~) (3) 

Us ing  equa t ion  z 0 = - h - $ ~ ,  w e  ob t a in  

+ h)~+ ~ (4) 
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If the field of distributed dislocations is defined by the density of Burgers  vec -  
tors  p(c~, fl), the coefficient of s t r e s s  intensity is calculated by formula  

(~ + h)~ + [~ d~ d~ (5) 

Let  us a ssume that the field p(a ,  13) is s tochast ic  and stat is t ical ly homogeneous 
[3]. The position of the c rack  (tip) is defined by pa ramete r  h and the relationship be- 
tween stochastic functions p(a,/3) and k(h) by expression (5). Passing to variables 
t = ~ + h, we obtain 

...... t, + ~, ) ,~t ,t~ (6)  

The paral le l  t ranslat ion t = o~ + h does not a l ter  the probabili ty charac te r i s t i cs  of function p(a ,  fl). 
Since the integral  t ransformat ion  (5) of function p ( t - h ,  13) is independent of h, hence h(k) is a s tat is t ical ly 
s ta t ionary  function. 

Let us consider  the c rack  propagation process  under combined residual  s t r e s ses  and external loads. 
As the condition of c rack  propagation we take the c r i te r ion  of Griffi th-Irwin,  which in this case  can be 
wri t ten as 

I k (h) + ~ I = k0 (7) 

where k 0 is the value of the intensity coefficient and R is the coefficient of intensity of s t r e s ses  produced 
by external loads. 

Let  the intensity coefficient R be produced by alternating external loads and its maximum and mini-  
mum absolute values equal. Let  us consider  the c rack  propagation process  on the assumption that the ex- 
t r e m e  value of R is equal to N. 

One of the patterns of the stochast ic  function k(h) is shown in Fig. 2. Its value for h = 0 corresponds  
to the initial position of the c rack  (tip). For  R = 0 the initial position of the c rack  (tip) is unstable, since 
k > k0, and the c rack  propagates until it becomes stabilized (with the tip) at the h = h 1. Fur ther  growth of 
the c rack  depends on changes of external loads. 

When with N < k 0 the c rack  tip reaches  points O1 or  02, then any var iat ion of external loads within 
the limits - N  -< R -< N will always resul t  in the stabilization of the c rack .  

If N = k0, the c rack  (tip) can be broughtto point (3 t by increasing R to k0. The position of the c rack  
(tip) will then be stable, since a fur ther  development of the c rack  under fixed external loads would resul t  
in a decrease  of the overal l  coefficient of intensity. Under decreas ing external loads the c rack  tip will 
remain  at point O1; however, on reaching R = -k0;  the c rack  becomes unstable, since its fur ther  growth 
would lead to an increase  of the absolute value of the overal l  intensity coefficient. With the c rack  (tip) at 
point 02 the c rack  becomes stable again. 

This p rocess  is repeated at each single cycle  of load variat ion and the c rack  is extended by twice 
the distance between the ze ros  of function k(h). The rate  of c rack  growth depends on the number of cycles 
n and can be expressed  by 
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dh 2 
d n -  Q (8) 

where Q is the number  of zeros  of function k(h) per  unit of length. 

In a cer ta in  sense the dependence (8) of c rack  growth on the number  of cycles may be called unstable, 
s ince the smal les t  deviation toward N < k 0 resul ts  in the stabilization of the crack.  A finite ra te  of crack 
propagation obtains when the equality N = k 0 is s t r ic t ly  satisfied. 

Let  us consider  the case  of N > ko, and assume that f rom the instant of incipient c rack  development 
at h = h l, R increases  to N. This resul ts  in an increase  of the c rack  with its tip reaching h = h 2. In Fig. 2 
the length of segment A2B 2 cor responds  to N. 

Fur ther  reduction of external load resul ts  in the unstable state C 2 which changes to state C 3. When 
the load is decreased  to the extent that R = --N, the c rack  (tip) reaches  point h 3. The subsequent increase  
of R leads to the unstable state B3, and so on. Points B2, A2, etc. cor respond to sudden increases  of the 
c rack  equal to the distance between the (points of) intersect ion of function k(h) with the level ] N - k  0 I- 

Let  P ( N - k  o) be the average  number  of overshoots  of the stochast ic  function k(h) beyond the level 
I N - k o  [, then the rate  of c rack  propagation can be wri t ten in the form 

dh 2 
dn -- ~ (N -- ko) (9) 

When P(N-k0) = 0, residual  s t r e s se s  cannot res t ra in  the development of the crack,  and the rate  dh /dn  
becomes  infinite. 

Let  N o cor respond  to the case in which the number of intersect ions between k(h) and the [ N - k  0 [ level 
is zero.  Then, when the coefficient of s t r e ss  intensity reaches  NO, the cyclic growth of the c rack  develops 
into a bri t t le  f rac ture .  

If one assumes  that the number  of overshoots  of function k(h) monotonically decreases  with the in- 
c r ease  of the [ N - k  01 level, the rate of c rack  development can be qualitatively represented  in t e rms  of N 
by the curve shown in Fig. 3. 

It follows f rom Eqs. (4) and (5) that the effect of internal s t r e s ses  on the intensity coefficient k is in- 
ve r se ly  proport ional  to the distance to the c rack  tip. If the dimensions of the c rack  a re  considerable  in 
compar ison with the cor re la t ion  radius of the field of internal s t r e s s e s ,  Eq. (9) can be considered as the 
local c r i te r ion  of c rack  propagation under cyclic loading. 

The dependence of dh /dn  on N shown in Fig. 3 can be used for defining the growth of fatigue cracks .  
In the range of N - l imited by experimental  conditions - a power dependence is usually assumed [4, 5]. 
However at fair ly smal l  values of N the c rack  growth can become unstable, and may al together  cease.  In 
Fig. 3 this cor responds  to N -< k 0. 
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